High-Throughput Photonics Packaging for Cost-Efficiency and Scalability.

Wilfried Haensch and Tymon Barwicz IBM T.J. Watson Research Center, NY USA

ECTC Panel May 2016

Silicon Photonics May be Hampered by Everything But the Silicon

Leverage high-throughput microelectronic assembly lines for photonics packaging

Comparing approaches to photonic packaging

Relative cost structure

	Bill of materials	Tools amortization	Labor	R&D cost
Manual assembly	\$\$	\$	\$\$\$	\$
Automated - custom tools	\$	\$\$\$	\$	\$\$\$
Automated - conv. pick & place tools	\$\$	\$	\$	\$\$\$

- High-throughput automation appears as logical trend with volume/complexity
- Share pick & place tools with IC assembly gives high tool amortization
- Relegating packaging IP to SiPh chip minimizes reconfiguration cost of assembly tools and jigs

Challenges to leveraging high-throughput tools for photonics

Integrate polymer lid for fiber handling

Our solutions to low-cost and scalable photonic packaging

- All approaches fully compatible with existing high-throughput assembly tools.
- Minimum number of parts and assembly steps for cost efficiency and scalability

Parallelized fiber assembly

Mechanical design

© 2016 IBM Corporation

Compliant polymer interface

- Large number of optical ports
- Flexible for mechanical reliability
- Self-aligned assembly (±1-2 μm) in high-throughput tools (±10 μm)

A few design details

Self-aligned photonic flip-chip assembly for InP integration

Cross-section after assembly

- Tighter alignment than in fibers as universally achievable mode size is smaller
- Self-alignment with lithographic stops in standard high-throughput tools
- Optical demo with 1.1 dB chip-to-chip transmission submitted for publication

Conclusion

Our vision is the integration of photonic packaging within microelectronic packaging facilities.

→ Same facility, different "node"
→ Same tools, different processes/jigs

Parallelized fiber assembly

Compliant polymer interface

Self-aligned photonic flip-chip

Demonstrated photonic packaging compatible with high-throughput microelectronic facilities

Working on bringing 3 solutions to the photonics community Requirement \rightarrow MEMS-like process for self-alignment structures on wafer.

Team and Acknowledgment

IBM T.J. Watson, NY USA Design, fabrication, analysis

Former 'IBM – Burlington' Chip manufacturing

IBM Research - Tokyo Ribbon-ferrule assembly

IBM Bromont – C2MI Assembly, measurement

Outside partners

Ted Lichoulas Eddie Kimbrell Fiber stub fabrication

Shotaro Takenobu Polymer ribbon fabrication

FURUKAWA ELECTRIC

Masato Shiino Custom ferrule fabrication

Follow our progress

Through our IBM project website \rightarrow Google "Silicon nanophotonic packaging."